Hacky work on biome tinting
Currently this requires python-gearman, gearman-java, and a java SDK. This code will probably be all thrown away, but if you really want to play, first compile Biome.java, then run the resulting Biome.class. Note you'll probably need to hack the signatures out of minecraft.jar to get it to run. Then copy grasscolor.png into the cwd, and run gmap.py as usual. It is slowwwww. Perhaps running Biome.class on multiple machines might speed things up? Here's the kind of output produced: http://smp.em32.net/biome_test/
This commit is contained in:
38
textures.py
38
textures.py
@@ -26,6 +26,13 @@ from PIL import Image, ImageEnhance, ImageOps
|
||||
import util
|
||||
import composite
|
||||
|
||||
sys.path.append("../python-gearman")
|
||||
|
||||
from gearman.client import GearmanClient
|
||||
|
||||
gmc = GearmanClient(["localhost"])
|
||||
|
||||
|
||||
def _find_file(filename, mode="rb"):
|
||||
"""Searches for the given file and returns an open handle to it.
|
||||
This searches the following locations in this order:
|
||||
@@ -531,9 +538,34 @@ def tintTexture(im, c):
|
||||
i.putalpha(im.split()[3]); # copy the alpha band back in. assuming RGBA
|
||||
return i
|
||||
|
||||
## prepare grasscolor.png
|
||||
grasscolor = list(Image.open("grasscolor.png").getdata())
|
||||
|
||||
|
||||
|
||||
def tintForBiome(im, x, y):
|
||||
result = gmc.submit_job("GetBiome", "%d,%d" % (x,y))
|
||||
temp, moisture = map(lambda x: float(x),result.result.split("/"))
|
||||
|
||||
#print result.result
|
||||
moisture *= temp
|
||||
i = int((1.0 - temp) * 255)
|
||||
j = int((1.0 - moisture) * 255)
|
||||
#print "tintInfo for %d,%d is %f,%f coord %d, %d" % (x,y, temp, moisture, i, j)
|
||||
#print "resulting color: %r" % (grasscolor.getpixel((i,j))[:-1],)
|
||||
#t = tintTexture(im[0], grasscolor.getpixel((i, j))[:-1])
|
||||
#im[0] = t
|
||||
#c = grasscolor.getpixel((j,i))[:-1]
|
||||
c = grasscolor[(j << 8 | i)]
|
||||
#print "grass color: %r" % (c,)
|
||||
i = ImageOps.colorize(ImageOps.grayscale(im[0]), (0,0,0), c)
|
||||
i.putalpha(im[1])
|
||||
return (i, im[1])
|
||||
|
||||
|
||||
# This set holds block ids that require special pre-computing. These are typically
|
||||
# things that require ancillary data to render properly (i.e. ladder plus orientation)
|
||||
special_blocks = set([66,59,61,62, 65,64,71,91,86,2,18])
|
||||
special_blocks = set([66,59,61,62, 65,64,71,91,86])
|
||||
|
||||
# this is a map of special blockIDs to a list of all
|
||||
# possible values for ancillary data that it might have.
|
||||
@@ -550,8 +582,8 @@ special_map[86] = range(5) # pumpkin
|
||||
# apparently pumpkins and jack-o-lanterns have ancillary data, but it's unknown
|
||||
# what that data represents. For now, assume that the range for data is 0 to 5
|
||||
# like torches
|
||||
special_map[2] = (0,) # grass
|
||||
special_map[18] = range(16) # leaves
|
||||
#special_map[2] = (0,) # grass
|
||||
#special_map[18] = range(16) # leaves
|
||||
# grass and leaves are now graysacle in terrain.png
|
||||
# we treat them as special so we can manually tint them
|
||||
# it is unknown how the specific tint (biomes) is calculated
|
||||
|
||||
Reference in New Issue
Block a user