# This file is part of the Minecraft Overviewer. # # Minecraft Overviewer is free software: you can redistribute it and/or # modify it under the terms of the GNU General Public License as published # by the Free Software Foundation, either version 3 of the License, or (at # your option) any later version. # # Minecraft Overviewer is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with the Overviewer. If not, see . import functools import os import os.path from glob import glob import multiprocessing import Queue import sys import logging import cPickle import collections import itertools import time import numpy import chunk import nbt import textures """ This module has routines for extracting information about available worlds """ base36decode = functools.partial(int, base=36) cached = collections.defaultdict(dict) def base36encode(number, alphabet='0123456789abcdefghijklmnopqrstuvwxyz'): ''' Convert an integer to a base36 string. ''' if not isinstance(number, (int, long)): raise TypeError('number must be an integer') newn = abs(number) # Special case for zero if number == 0: return '0' base36 = '' while newn != 0: newn, i = divmod(newn, len(alphabet)) base36 = alphabet[i] + base36 if number < 0: return "-" + base36 return base36 class World(object): """Does world-level preprocessing to prepare for QuadtreeGen worlddir is the path to the minecraft world outputdir is the output path for this render. It is used only to find the persistent data files to read in data from last render. Also it creates this directory if it doesn't exist. """ mincol = maxcol = minrow = maxrow = 0 ### TODO clean up all of this! def __init__(self, worlddir, outputdir, useBiomeData=False, regionlist=None, north_direction="auto"): self.worlddir = worlddir self.outputdir = outputdir self.useBiomeData = useBiomeData self.north_direction = north_direction self.regionsets = [] # Scan worlddir to try to identify all region sets if not os.path.exists(os.path.join(self.worlddir, "level.dat")): raise Exception("level.dat not found in %s" % self.worlddir) for root, dirs, files in os.walk(self.worlddir): # any .mcr files in this directory? mcrs = filter(lambda x: x.endswith(".mcr")) if mcrs: # construct a regionset object for this rset = RegionSet(self, os.path.join(self.worlddir, root)) self.regionsets.append(rset) # TODO consider reordering self.regionsets so that the 'default' region is first # TODO move a lot of the following code into the RegionSet # figure out chunk format is in use # if not mcregion, error out early data = nbt.load(os.path.join(self.worlddir, "level.dat"))[1]['Data'] if not ('version' in data and data['version'] == 19132): logging.error("Sorry, This version of Minecraft-Overviewer only works with the new McRegion chunk format") sys.exit(1) # TODO move levelname into the regionsets? if 'LevelName' in data: # level.dat should have the LevelName attribute so we'll use that self.name = data['LevelName'] else: # but very old ones might not? so we'll just go with the world dir name if they don't self.name = os.path.basename(os.path.realpath(self.worlddir)) # handle 'auto' north if self.north_direction == 'auto': self.north_direction = self.persistentData['north_direction'] north_direction = self.north_direction # If a region list was given, make sure the given paths are absolute if regionlist: self.regionlist = map(os.path.abspath, regionlist) else: self.regionlist = None def get_level_dat_data(self): """Returns a dictionary representing the level.dat data for this World""" return nbt.load(os.path.join(self.worlddir, "level.dat")) def get_regionsets(self): return self.regionsets def get_region_mtime(self,filename): return (self.regions[filename][0],self.regions[filename][1]) def convert_coords(self, chunkx, chunky): """Takes a coordinate (chunkx, chunky) where chunkx and chunky are in the chunk coordinate system, and figures out the row and column in the image each one should be. Returns (col, row).""" # columns are determined by the sum of the chunk coords, rows are the # difference # change this function, and you MUST change unconvert_coords return (chunkx + chunky, chunky - chunkx) def unconvert_coords(self, col, row): """Undoes what convert_coords does. Returns (chunkx, chunky).""" # col + row = chunky + chunky => (col + row)/2 = chunky # col - row = chunkx + chunkx => (col - row)/2 = chunkx return ((col - row) / 2, (col + row) / 2) def find_true_spawn(self): """Adds the true spawn location to self.POI. The spawn Y coordinate is almost always the default of 64. Find the first air block above that point for the true spawn location""" ## read spawn info from level.dat data = nbt.load(os.path.join(self.worlddir, "level.dat"))[1] disp_spawnX = spawnX = data['Data']['SpawnX'] spawnY = data['Data']['SpawnY'] disp_spawnZ = spawnZ = data['Data']['SpawnZ'] if self.north_direction == 'upper-left': temp = spawnX spawnX = -spawnZ spawnZ = temp elif self.north_direction == 'upper-right': spawnX = -spawnX spawnZ = -spawnZ elif self.north_direction == 'lower-right': temp = spawnX spawnX = spawnZ spawnZ = -temp ## The chunk that holds the spawn location chunkX = spawnX/16 chunkY = spawnZ/16 ## clamp spawnY to a sane value, in-chunk value if spawnY < 0: spawnY = 0 if spawnY > 127: spawnY = 127 try: ## The filename of this chunk chunkFile = self.get_region_path(chunkX, chunkY) if chunkFile is not None: data = nbt.load_from_region(chunkFile, chunkX, chunkY, self.north_direction) if data is not None: level = data[1]['Level'] blockArray = numpy.frombuffer(level['Blocks'], dtype=numpy.uint8).reshape((16,16,128)) ## The block for spawn *within* the chunk inChunkX = spawnX - (chunkX*16) inChunkZ = spawnZ - (chunkY*16) ## find the first air block while (blockArray[inChunkX, inChunkZ, spawnY] != 0): spawnY += 1 if spawnY == 128: break except chunk.ChunkCorrupt: #ignore corrupt spawn, and continue pass self.POI.append( dict(x=disp_spawnX, y=spawnY, z=disp_spawnZ, msg="Spawn", type="spawn", chunk=(chunkX, chunkY))) self.spawn = (disp_spawnX, spawnY, disp_spawnZ) def determine_bounds(self): """Scan the world directory, to fill in self.{min,max}{col,row} for use later in quadtree.py. """ logging.info("Scanning chunks") # find the dimensions of the map, in region files minx = maxx = miny = maxy = 0 found_regions = False for x, y in self.regionfiles: found_regions = True minx = min(minx, x) maxx = max(maxx, x) miny = min(miny, y) maxy = max(maxy, y) if not found_regions: logging.error("Error: No chunks found!") sys.exit(1) logging.debug("Done scanning chunks") # turn our region coordinates into chunk coordinates minx = minx * 32 miny = miny * 32 maxx = maxx * 32 + 32 maxy = maxy * 32 + 32 # Translate chunks to our diagonal coordinate system mincol = maxcol = minrow = maxrow = 0 for chunkx, chunky in [(minx, miny), (minx, maxy), (maxx, miny), (maxx, maxy)]: col, row = self.convert_coords(chunkx, chunky) mincol = min(mincol, col) maxcol = max(maxcol, col) minrow = min(minrow, row) maxrow = max(maxrow, row) #logging.debug("map size: (%i, %i) to (%i, %i)" % (mincol, minrow, maxcol, maxrow)) self.mincol = mincol self.maxcol = maxcol self.minrow = minrow self.maxrow = maxrow def _get_north_rotations(self): if self.north_direction == 'upper-left': return 1 elif self.north_direction == 'upper-right': return 2 elif self.north_direction == 'lower-right': return 3 elif self.north_direction == 'lower-left': return 0 class RegionSet(object): """\ This object is the gateway to a set of regions (or dimension) from the world we're reading from. There is one of these per set of regions on the hard drive, but may be several per invocation of the Overviewer in the case of multi-world. """ def __init__(self, worldobj, regiondir): self.world = worldobj self.regiondir = regiondir logging.info("Scanning regions") # This is populated by reload_region(). It is a mapping from region # filename to: (region object, mtime, chunkcache) self.regions = {} # This is populated below. It is a mapping from (x,y) region coords to # (x,y,filename, region object) self.regionfiles = {} # Loads requested/all regions, caching region header info for x, y, regionfile in self._iterate_regionfiles(): # reload_region caches the region object in self.regions mcr = self._reload_region(regionfile) #mcr.get_chunk_info() # get_chunk_info was removed from nbt.py. needs to be reimplemented self.regionfiles[(x,y)] = (x,y,regionfile,mcr) # the max number of chunks we will keep before removing them (includes emptry chunks) self.chunklimit = 1024 self.chunkcount = 0 self.empty_chunk = [None,None] logging.debug("Done scanning regions") def get_region_path(self, chunkX, chunkY): """Returns the path to the region that contains chunk (chunkX, chunkY) """ _, _, regionfile,_ = self.regionfiles.get((chunkX//32, chunkY//32),(None,None,None,None)) return regionfile def load_from_region(self,filename, x, y): #we need to manage the chunk cache regioninfo = self.regions[filename] if regioninfo is None: return None chunks = regioninfo[2] chunk_data = chunks.get((x,y)) if chunk_data is None: #prune the cache if required if self.chunkcount > self.chunklimit: #todo: make the emptying the chunk cache slightly less crazy [self.reload_region(regionfile) for regionfile in self.regions if regionfile <> filename] self.chunkcount = 0 self.chunkcount += 1 nbt = self.load_region(filename).load_chunk(x, y) if nbt is None: chunks[(x,y)] = self.empty_chunk return None ## return none. I think this is who we should indicate missing chunks #raise IOError("No such chunk in region: (%i, %i)" % (x, y)) #we cache the transformed data, not its raw form data = nbt.read_all() level = data[1]['Level'] chunk_data = level chunk_data['Blocks'] = numpy.array(numpy.rot90(numpy.frombuffer( level['Blocks'], dtype=numpy.uint8).reshape((16,16,128)), self._get_north_rotations())) chunk_data['Data'] = numpy.array(numpy.rot90(numpy.frombuffer( level['Data'], dtype=numpy.uint8).reshape((16,16,64)), self._get_north_rotations())) chunk_data['SkyLight'] = numpy.array(numpy.rot90(numpy.frombuffer( level['SkyLight'], dtype=numpy.uint8).reshape((16,16,64)), self._get_north_rotations())) chunk_data['BlockLight'] = numpy.array(numpy.rot90(numpy.frombuffer( level['BlockLight'], dtype=numpy.uint8).reshape((16,16,64)), self._get_north_rotations())) #chunk_data = {} #chunk_data['skylight'] = chunk.get_skylight_array(level) #chunk_data['blocklight'] = chunk.get_blocklight_array(level) #chunk_data['blockarray'] = chunk.get_blockdata_array(level) #chunk_data['TileEntities'] = chunk.get_tileentity_data(level) chunks[(x,y)] = [level,time.time()] else: chunk_data = chunk_data[0] return chunk_data def load_region(self,filename): return self.regions[filename][0] def get_chunk(self, x, z): """Returns a dictionary representing the top-level NBT Compound for a chunk given its x, z coordinates. The coordinates are chunk coordinates. """ regionfile = self.get_region_path(x, z) regioninfo = self.regions[regionfile] if regioninfo is None: return None return regioninfo[0].load_chunk(x,z) def iterate_chunks(self): """Returns an iterator over all chunk metadata in this world. Iterates over tuples of integers (x,z,mtime) for each chunk. Other chunk data is not returned here. Old name: world.iterate_chunk_metadata """ for regionx, regiony, _, mcr in self.regionfiles.itervalues(): for chunkx, chunky in mcr.get_chunks(): yield chunkx+32*regionx, chunky+32*regiony, mcr.get_chunk_timestamp(chunkx, chunky) def chunk_exists(self, x, z): """Returns True or False depending on whether the given chunk exists. """ return self.regions[self.get_region_path(x,z)][0].chunk_exists(x,z) #used to reload a changed region def _reload_region(self,filename): if self.regions.get(filename) is not None: self.regions[filename][0].closefile() chunkcache = {} mcr = nbt.load_region(filename) self.regions[filename] = (mcr,os.path.getmtime(filename),chunkcache) return mcr def _iterate_regionfiles(self,regionlist=None): """Returns an iterator of all of the region files, along with their coordinates Note: the regionlist here will be used to determinte the size of the world. Returns (regionx, regiony, filename)""" join = os.path.join if regionlist is not None: for path in regionlist: path = path.strip() f = os.path.basename(path) if f.startswith("r.") and f.endswith(".mcr"): p = f.split(".") logging.debug("Using path %s from regionlist", f) x = int(p[1]) y = int(p[2]) if self.north_direction == 'upper-left': temp = x x = -y-1 y = temp elif self.north_direction == 'upper-right': x = -x-1 y = -y-1 elif self.north_direction == 'lower-right': temp = x x = y y = -temp-1 yield (x, y, join(self.worlddir, 'region', f)) else: logging.warning("Ignoring non region file '%s' in regionlist", f) else: for path in glob(self.regiondir + "/r.*.*.mcr"): dirpath, f = os.path.split(path) p = f.split(".") x = int(p[1]) y = int(p[2]) ##TODO if self.north_direction == 'upper-left': ##TODO temp = x ##TODO x = -y-1 ##TODO y = temp ##TODO elif self.north_direction == 'upper-right': ##TODO x = -x-1 ##TODO y = -y-1 ##TODO elif self.north_direction == 'lower-right': ##TODO temp = x ##TODO x = y ##TODO y = -temp-1 yield (x, y, join(dirpath, f)) def get_save_dir(): """Returns the path to the local saves directory * On Windows, at %APPDATA%/.minecraft/saves/ * On Darwin, at $HOME/Library/Application Support/minecraft/saves/ * at $HOME/.minecraft/saves/ """ savepaths = [] if "APPDATA" in os.environ: savepaths += [os.path.join(os.environ['APPDATA'], ".minecraft", "saves")] if "HOME" in os.environ: savepaths += [os.path.join(os.environ['HOME'], "Library", "Application Support", "minecraft", "saves")] savepaths += [os.path.join(os.environ['HOME'], ".minecraft", "saves")] for path in savepaths: if os.path.exists(path): return path def get_worlds(): "Returns {world # or name : level.dat information}" ret = {} save_dir = get_save_dir() # No dirs found - most likely not running from inside minecraft-dir if save_dir is None: return None for dir in os.listdir(save_dir): world_dat = os.path.join(save_dir, dir, "level.dat") if not os.path.exists(world_dat): continue info = nbt.load(world_dat)[1] info['Data']['path'] = os.path.join(save_dir, dir) if dir.startswith("World") and len(dir) == 6: try: world_n = int(dir[-1]) ret[world_n] = info['Data'] except ValueError: pass if 'LevelName' in info['Data'].keys(): ret[info['Data']['LevelName']] = info['Data'] return ret