# This file is part of the Minecraft Overviewer. # # Minecraft Overviewer is free software: you can redistribute it and/or # modify it under the terms of the GNU General Public License as published # by the Free Software Foundation, either version 3 of the License, or (at # your option) any later version. # # Minecraft Overviewer is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with the Overviewer. If not, see . import multiprocessing import Queue import os import os.path import functools import collections import logging import time from . import textures from . import util import c_overviewer """ This module has routines related to distributing the render job to multiple nodes """ def catch_keyboardinterrupt(func): """Decorator that catches a keyboardinterrupt and raises a real exception so that multiprocessing will propagate it properly""" @functools.wraps(func) def newfunc(*args, **kwargs): try: return func(*args, **kwargs) except KeyboardInterrupt: logging.error("Ctrl-C caught!") raise Exception("Exiting") except: import traceback traceback.print_exc() raise return newfunc child_rendernode = None def pool_initializer(rendernode): logging.debug("Child process {0}".format(os.getpid())) #stash the quadtree objects in a global variable after fork() for windows compat. global child_rendernode child_rendernode = rendernode # make sure textures are generated for this process # and initialize c_overviewer textures.generate(path=rendernode.options.get('textures_path', None), north_direction=rendernode.options.get('north_direction', None)) c_overviewer.init_chunk_render() # setup c_overviewer rendermode customs / options for mode in rendernode.options.custom_rendermodes: c_overviewer.add_custom_render_mode(mode, rendernode.options.custom_rendermodes[mode]) for mode in rendernode.options.rendermode_options: c_overviewer.set_render_mode_options(mode, rendernode.options.rendermode_options[mode]) # load biome data in each process, if needed for quadtree in rendernode.quadtrees: if quadtree.world.useBiomeData: # make sure we've at least *tried* to load the color arrays in this process... textures.prepareBiomeData(quadtree.world.worlddir) if not textures.grasscolor or not textures.foliagecolor: raise Exception("Can't find grasscolor.png or foliagecolor.png") # only load biome data once break class RenderNode(object): def __init__(self, quadtrees, options): """Distributes the rendering of a list of quadtrees.""" if not len(quadtrees) > 0: raise ValueError("there must be at least one quadtree to work on") self.options = options # A list of quadtree.QuadTree objects representing each rendermode # requested self.quadtrees = quadtrees #List of changed tiles self.rendered_tiles = [] #bind an index value to the quadtree so we can find it again #and figure out which worlds are where self.worlds = [] for i, q in enumerate(quadtrees): q._render_index = i i += 1 if q.world not in self.worlds: self.worlds.append(q.world) manager = multiprocessing.Manager() # queue for receiving interesting events from the renderer # (like the discovery of signs! #stash into the world object like we stash an index into the quadtree for world in self.worlds: world.poi_q = manager.Queue() def print_statusline(self, complete, total, level, unconditional=False): if unconditional: pass elif complete < 100: if not complete % 25 == 0: return elif complete < 1000: if not complete % 100 == 0: return else: if not complete % 1000 == 0: return logging.info("{0}/{1} ({4}%) tiles complete on level {2}/{3}".format( complete, total, level, self.max_p, '%.1f' % ( (100.0 * complete) / total) )) def go(self, procs): """Renders all tiles""" logging.debug("Parent process {0}".format(os.getpid())) # Create a pool if procs == 1: pool = FakePool() pool_initializer(self) else: pool_initializer(self) pool = multiprocessing.Pool(processes=procs,initializer=pool_initializer,initargs=(self,)) #warm up the pool so it reports all the worker id's if logging.getLogger().level >= 10: pool.map(bool,xrange(multiprocessing.cpu_count()),1) else: pool.map_async(bool,xrange(multiprocessing.cpu_count()),1) # 1 quadtree object per rendermode requested quadtrees = self.quadtrees # Determine the total number of tiles by adding up the number of tiles # from each quadtree. Also find the max zoom level (max_p). Even though # each quadtree will always have the same zoom level, this bit of code # does not make that assumption. max_p = 0 total = 0 for q in quadtrees: total += 4**q.p if q.p > max_p: max_p = q.p self.max_p = max_p # The next sections of code render the highest zoom level of tiles. The # section after render the other levels. results = collections.deque() complete = 0 logging.info("Rendering highest zoom level of tiles now.") logging.info("Rendering {0} layer{1}".format(len(quadtrees),'s' if len(quadtrees) > 1 else '' )) logging.info("There are {0} tiles to render".format(total)) logging.info("There are {0} total levels to render".format(self.max_p)) logging.info("Don't worry, each level has only 25% as many tiles as the last.") logging.info("The others will go faster") count = 0 batch_size = 4*len(quadtrees) while batch_size < 10: batch_size *= 2 timestamp = time.time() for result in self._apply_render_worldtiles(pool,batch_size): results.append(result) # every second drain some of the queue timestamp2 = time.time() if timestamp2 >= timestamp + 1: timestamp = timestamp2 count_to_remove = (1000//batch_size) if count_to_remove < len(results): for world in self.worlds: try: while (1): # an exception will break us out of this loop item = world.poi_q.get(block=False) if item[0] == "newpoi": if item[1] not in world.POI: #print "got an item from the queue!" world.POI.append(item[1]) elif item[0] == "removePOI": world.persistentData['POI'] = filter(lambda x: x['chunk'] != item[1], world.persistentData['POI']) elif item[0] == "rendered": self.rendered_tiles.append(item[1]) except Queue.Empty: pass while count_to_remove > 0: count_to_remove -= 1 complete += results.popleft().get() self.print_statusline(complete, total, 1) if len(results) > (10000//batch_size): # Empty the queue before adding any more, so that memory # required has an upper bound while len(results) > (500//batch_size): complete += results.popleft().get() self.print_statusline(complete, total, 1) # Wait for the rest of the results while len(results) > 0: complete += results.popleft().get() self.print_statusline(complete, total, 1) for world in self.worlds: try: while (1): # an exception will break us out of this loop item = world.poi_q.get(block=False) if item[0] == "newpoi": if item[1] not in world.POI: #print "got an item from the queue!" world.POI.append(item[1]) elif item[0] == "removePOI": world.persistentData['POI'] = filter(lambda x: x['chunk'] != item[1], world.persistentData['POI']) elif item[0] == "rendered": self.rendered_tiles.append(item[1]) except Queue.Empty: pass self.print_statusline(complete, total, 1, True) # The highest zoom level has been rendered. # Now do the lower zoom levels for zoom in xrange(self.max_p-1, 0, -1): level = self.max_p - zoom + 1 assert len(results) == 0 complete = 0 total = 0 for q in quadtrees: if zoom <= q.p: total += 4**zoom logging.info("Starting level {0}".format(level)) timestamp = time.time() for result in self._apply_render_inntertile(pool, zoom,batch_size): results.append(result) # every second drain some of the queue timestamp2 = time.time() if timestamp2 >= timestamp + 1: timestamp = timestamp2 count_to_remove = (1000//batch_size) if count_to_remove < len(results): while count_to_remove > 0: count_to_remove -= 1 complete += results.popleft().get() self.print_statusline(complete, total, level) if len(results) > (10000/batch_size): while len(results) > (500/batch_size): complete += results.popleft().get() self.print_statusline(complete, total, level) # Empty the queue while len(results) > 0: complete += results.popleft().get() self.print_statusline(complete, total, level) self.print_statusline(complete, total, level, True) logging.info("Done") pool.close() pool.join() # Do the final one right here: for q in quadtrees: q.render_innertile(os.path.join(q.destdir, q.tiledir), "base") def _apply_render_worldtiles(self, pool,batch_size): """Adds tiles to the render queue and dispatch them to the worker pool. Returns an iterator over result objects. Each time a new result is requested, a new batch of tasks are added to the pool and a result object is returned. """ if batch_size < len(self.quadtrees): batch_size = len(self.quadtrees) batch = [] jobcount = 0 # roundrobin add tiles to a batch job (thus they should all roughly work on similar chunks) iterables = [q.get_worldtiles() for q in self.quadtrees] for job in util.roundrobin(iterables): # fixup so the worker knows which quadtree this is job[0] = job[0]._render_index # Put this in the batch to be submited to the pool batch.append(job) jobcount += 1 if jobcount >= batch_size: jobcount = 0 yield pool.apply_async(func=render_worldtile_batch, args= [batch]) batch = [] if jobcount > 0: yield pool.apply_async(func=render_worldtile_batch, args= [batch]) def _apply_render_inntertile(self, pool, zoom,batch_size): """Same as _apply_render_worltiles but for the inntertile routine. Returns an iterator that yields result objects from tasks that have been applied to the pool. """ if batch_size < len(self.quadtrees): batch_size = len(self.quadtrees) batch = [] jobcount = 0 # roundrobin add tiles to a batch job (thus they should all roughly work on similar chunks) iterables = [q.get_innertiles(zoom) for q in self.quadtrees if zoom <= q.p] for job in util.roundrobin(iterables): # fixup so the worker knows which quadtree this is job[0] = job[0]._render_index # Put this in the batch to be submited to the pool batch.append(job) jobcount += 1 if jobcount >= batch_size: jobcount = 0 yield pool.apply_async(func=render_innertile_batch, args= [batch]) batch = [] if jobcount > 0: yield pool.apply_async(func=render_innertile_batch, args= [batch]) @catch_keyboardinterrupt def render_worldtile_batch(batch): # batch is a list of items to process. Each item is [quadtree_id, Tile object] global child_rendernode rendernode = child_rendernode count = 0 #logging.debug("{0} working on batch of size {1}".format(os.getpid(),len(batch))) for job in batch: count += 1 quadtree = rendernode.quadtrees[job[0]] tile = job[1] quadtree.render_worldtile(tile) return count @catch_keyboardinterrupt def render_innertile_batch(batch): global child_rendernode rendernode = child_rendernode count = 0 #logging.debug("{0} working on batch of size {1}".format(os.getpid(),len(batch))) for job in batch: count += 1 quadtree = rendernode.quadtrees[job[0]] dest = quadtree.full_tiledir+os.sep+job[1] quadtree.render_innertile(dest=dest,name=job[2]) return count class FakeResult(object): def __init__(self, res): self.res = res def get(self): return self.res class FakePool(object): """A fake pool used to render things in sync. Implements a subset of multiprocessing.Pool""" def apply_async(self, func, args=(), kwargs=None): if not kwargs: kwargs = {} result = func(*args, **kwargs) return FakeResult(result) def close(self): pass def join(self): pass