Minecraft-Overviewer/overviewer_core/src/iterate.c

727 lines
28 KiB
C

/*
* This file is part of the Minecraft Overviewer.
*
* Minecraft Overviewer is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Minecraft Overviewer is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with the Overviewer. If not, see <http://www.gnu.org/licenses/>.
*/
#include "block_class.h"
#include "mc_id.h"
#include "overviewer.h"
static PyObject* textures = NULL;
unsigned int max_blockid = 0;
unsigned int max_data = 0;
unsigned char* block_properties = NULL;
static PyObject* known_blocks = NULL;
static PyObject* transparent_blocks = NULL;
static PyObject* solid_blocks = NULL;
static PyObject* fluid_blocks = NULL;
static PyObject* nospawn_blocks = NULL;
static PyObject* nodata_blocks = NULL;
PyObject* init_chunk_render(void) {
PyObject* tmp = NULL;
unsigned int i;
/* this function only needs to be called once, anything more should be
* ignored */
if (textures) {
Py_RETURN_NONE;
}
textures = PyImport_ImportModule("overviewer_core.textures");
/* ensure none of these pointers are NULL */
if ((!textures)) {
return NULL;
}
tmp = PyObject_GetAttrString(textures, "max_blockid");
if (!tmp)
return NULL;
max_blockid = PyLong_AsLong(tmp);
Py_DECREF(tmp);
tmp = PyObject_GetAttrString(textures, "max_data");
if (!tmp)
return NULL;
max_data = PyLong_AsLong(tmp);
Py_DECREF(tmp);
/* assemble the property table */
known_blocks = PyObject_GetAttrString(textures, "known_blocks");
if (!known_blocks)
return NULL;
transparent_blocks = PyObject_GetAttrString(textures, "transparent_blocks");
if (!transparent_blocks)
return NULL;
solid_blocks = PyObject_GetAttrString(textures, "solid_blocks");
if (!solid_blocks)
return NULL;
fluid_blocks = PyObject_GetAttrString(textures, "fluid_blocks");
if (!fluid_blocks)
return NULL;
nospawn_blocks = PyObject_GetAttrString(textures, "nospawn_blocks");
if (!nospawn_blocks)
return NULL;
nodata_blocks = PyObject_GetAttrString(textures, "nodata_blocks");
if (!nodata_blocks)
return NULL;
block_properties = calloc(max_blockid, sizeof(unsigned char));
for (i = 0; i < max_blockid; i++) {
PyObject* block = PyLong_FromLong(i);
if (PySequence_Contains(known_blocks, block))
block_properties[i] |= 1 << KNOWN;
if (PySequence_Contains(transparent_blocks, block))
block_properties[i] |= 1 << TRANSPARENT;
if (PySequence_Contains(solid_blocks, block))
block_properties[i] |= 1 << SOLID;
if (PySequence_Contains(fluid_blocks, block))
block_properties[i] |= 1 << FLUID;
if (PySequence_Contains(nospawn_blocks, block))
block_properties[i] |= 1 << NOSPAWN;
if (PySequence_Contains(nodata_blocks, block))
block_properties[i] |= 1 << NODATA;
Py_DECREF(block);
}
Py_RETURN_NONE;
}
/* helper for load_chunk, loads a section into a chunk */
static inline void load_chunk_section(ChunkData* dest, int i, PyObject* section) {
dest->sections[i].blocks = (PyArrayObject*)PyDict_GetItemString(section, "Blocks");
dest->sections[i].data = (PyArrayObject*)PyDict_GetItemString(section, "Data");
dest->sections[i].skylight = (PyArrayObject*)PyDict_GetItemString(section, "SkyLight");
dest->sections[i].blocklight = (PyArrayObject*)PyDict_GetItemString(section, "BlockLight");
Py_INCREF(dest->sections[i].blocks);
Py_INCREF(dest->sections[i].data);
Py_INCREF(dest->sections[i].skylight);
Py_INCREF(dest->sections[i].blocklight);
}
/* loads the given chunk into the chunks[] array in the state
* returns true on error
*
* if required is true, failure to load the chunk will raise a python
* exception and return true.
*/
int load_chunk(RenderState* state, int x, int z, unsigned char required) {
ChunkData* dest = &(state->chunks[1 + x][1 + z]);
int i;
PyObject* chunk = NULL;
PyObject* sections = NULL;
if (dest->loaded)
return 0;
/* set up reasonable defaults */
dest->biomes = NULL;
for (i = 0; i < SECTIONS_PER_CHUNK; i++) {
dest->sections[i].blocks = NULL;
dest->sections[i].data = NULL;
dest->sections[i].skylight = NULL;
dest->sections[i].blocklight = NULL;
}
dest->loaded = 1;
x += state->chunkx;
z += state->chunkz;
chunk = PyObject_CallMethod(state->regionset, "get_chunk", "ii", x, z);
if (chunk == NULL) {
// An exception is already set. RegionSet.get_chunk sets
// ChunkDoesntExist
if (!required) {
PyErr_Clear();
}
return 1;
}
sections = PyDict_GetItemString(chunk, "Sections");
if (sections) {
sections = PySequence_Fast(sections, "Sections tag was not a list!");
}
if (sections == NULL) {
// exception set, again
Py_DECREF(chunk);
if (!required) {
PyErr_Clear();
}
return 1;
}
dest->biomes = (PyArrayObject*)PyDict_GetItemString(chunk, "Biomes");
Py_INCREF(dest->biomes);
for (i = 0; i < PySequence_Fast_GET_SIZE(sections); i++) {
PyObject* ycoord = NULL;
int sectiony = 0;
PyObject* section = PySequence_Fast_GET_ITEM(sections, i);
ycoord = PyDict_GetItemString(section, "Y");
if (!ycoord)
continue;
sectiony = PyLong_AsLong(ycoord);
if (sectiony >= 0 && sectiony < SECTIONS_PER_CHUNK)
load_chunk_section(dest, sectiony, section);
}
Py_DECREF(sections);
Py_DECREF(chunk);
return 0;
}
/* helper to unload all loaded chunks */
static void
unload_all_chunks(RenderState* state) {
unsigned int i, j, k;
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
if (state->chunks[i][j].loaded) {
Py_XDECREF(state->chunks[i][j].biomes);
for (k = 0; k < SECTIONS_PER_CHUNK; k++) {
Py_XDECREF(state->chunks[i][j].sections[k].blocks);
Py_XDECREF(state->chunks[i][j].sections[k].data);
Py_XDECREF(state->chunks[i][j].sections[k].skylight);
Py_XDECREF(state->chunks[i][j].sections[k].blocklight);
}
state->chunks[i][j].loaded = 0;
}
}
}
}
unsigned short
check_adjacent_blocks(RenderState* state, int x, int y, int z, unsigned short blockid) {
/*
* Generates a pseudo ancillary data for blocks that depend of
* what are surrounded and don't have ancillary data. This
* function is used through generate_pseudo_data.
*
* This uses a binary number of 4 digits to encode the info:
*
* 0b1234:
* Bit: 1 2 3 4
* Side: +x +z -x -z
* Values: bit = 0 -> The corresponding side block has different blockid
* bit = 1 -> The corresponding side block has same blockid
* Example: if the bit1 is 1 that means that there is a block with
* blockid in the side of the +x direction.
*/
unsigned char pdata = 0;
if (get_data(state, BLOCKS, x + 1, y, z) == blockid) {
pdata = pdata | (1 << 3);
}
if (get_data(state, BLOCKS, x, y, z + 1) == blockid) {
pdata = pdata | (1 << 2);
}
if (get_data(state, BLOCKS, x - 1, y, z) == blockid) {
pdata = pdata | (1 << 1);
}
if (get_data(state, BLOCKS, x, y, z - 1) == blockid) {
pdata = pdata | (1 << 0);
}
return pdata;
}
unsigned short
generate_pseudo_data(RenderState* state, unsigned short ancilData) {
/*
* Generates a fake ancillary data for blocks that are drawn
* depending on what are surrounded.
*/
int x = state->x, y = state->y, z = state->z;
unsigned short data = 0;
if (state->block == block_grass) { /* grass */
/* return 0x10 if grass is covered in snow */
if (get_data(state, BLOCKS, x, y + 1, z) == 78)
return 0x10;
return ancilData;
} else if (block_class_is_subset(state->block, (mc_block_t[]){block_flowing_water, block_water}, 2)) { /* water */
data = check_adjacent_blocks(state, x, y, z, state->block) ^ 0x0f;
/* an aditional bit for top is added to the 4 bits of check_adjacent_blocks */
if (get_data(state, BLOCKS, x, y + 1, z) != state->block)
data |= 0x10;
return data;
} else if (block_class_is_subset(state->block, (mc_block_t[]){block_glass, block_ice, block_stained_glass}, 3)) { /* glass and ice and stained glass*/
/* an aditional bit for top is added to the 4 bits of check_adjacent_blocks
* Note that stained glass encodes 16 colors using 4 bits. this pushes us over the 8-bits of an unsigned char,
* forcing us to use an unsigned short to hold 16 bits of pseudo ancil data
* */
if ((get_data(state, BLOCKS, x, y + 1, z) == 20) || (get_data(state, BLOCKS, x, y + 1, z) == 95)) {
data = 0;
} else {
data = 16;
}
data = (check_adjacent_blocks(state, x, y, z, state->block) ^ 0x0f) | data;
return (data << 4) | (ancilData & 0x0f);
} else if (block_class_is_subset(state->block, block_class_fence, block_class_fence_len)) { /* fences */
/* check for fences AND fence gates */
return check_adjacent_blocks(state, x, y, z, state->block) | check_adjacent_blocks(state, x, y, z, block_fence_gate) |
check_adjacent_blocks(state, x, y, z, block_fence_gate) | check_adjacent_blocks(state, x, y, z, block_birch_fence_gate) | check_adjacent_blocks(state, x, y, z, block_jungle_fence_gate) |
check_adjacent_blocks(state, x, y, z, block_dark_oak_fence_gate) | check_adjacent_blocks(state, x, y, z, block_acacia_fence_gate);
} else if (state->block == block_redstone_wire) { /* redstone */
/* three addiotional bit are added, one for on/off state, and
* another two for going-up redstone wire in the same block
* (connection with the level y+1) */
unsigned char above_level_data = 0, same_level_data = 0, below_level_data = 0, possibly_connected = 0, final_data = 0;
/* check for air in y+1, no air = no connection with upper level */
if (get_data(state, BLOCKS, x, y + 1, z) == 0) {
above_level_data = check_adjacent_blocks(state, x, y + 1, z, state->block);
} /* else above_level_data = 0 */
/* check connection with same level (other redstone and trapped chests */
same_level_data = check_adjacent_blocks(state, x, y, z, 55) | check_adjacent_blocks(state, x, y, z, 146);
/* check the posibility of connection with y-1 level, check for air */
possibly_connected = check_adjacent_blocks(state, x, y, z, 0);
/* check connection with y-1 level */
below_level_data = check_adjacent_blocks(state, x, y - 1, z, state->block);
final_data = above_level_data | same_level_data | (below_level_data & possibly_connected);
/* add the three bits */
if (ancilData > 0) { /* powered redstone wire */
final_data = final_data | 0x40;
}
if ((above_level_data & 0x01)) { /* draw top left going up redstonewire */
final_data = final_data | 0x20;
}
if ((above_level_data & 0x08)) { /* draw top right going up redstonewire */
final_data = final_data | 0x10;
}
return final_data;
} else if (block_class_is_subset(state->block, (mc_block_t[]){block_chest, block_trapped_chest}, 2)) {
/* Orientation is given by ancilData, pseudo data needed to
* choose from single or double chest and the correct half of
* the chest. */
/* Add two bits to ancilData to store single or double chest
* and which half of the chest it is: bit 0x10 = second half
* bit 0x8 = first half */
unsigned char chest_data = 0, final_data = 0;
/* search for adjacent chests of the same type */
chest_data = check_adjacent_blocks(state, x, y, z, state->block);
if (chest_data == 1) { /* another chest in the upper-left */
final_data = final_data | 0x10 | ancilData;
} else if (chest_data == 2) { /* in the bottom-left */
final_data = final_data | 0x8 | ancilData;
} else if (chest_data == 4) { /*in the bottom-right */
final_data = final_data | 0x8 | ancilData;
} else if (chest_data == 8) { /*in the upper-right */
final_data = final_data | 0x10 | ancilData;
} else if (chest_data == 0) {
/* Single chest, determine the orientation */
final_data = ancilData;
} else {
/* more than one adjacent chests! That shouldn't be
* possible! render as normal chest */
return 0;
}
return final_data;
} else if (block_class_is_subset(state->block, (mc_block_t[]){block_iron_bars, block_glass_pane, block_stained_glass_pane}, 3)) {
/* iron bars and glass panes:
* they seem to stick to almost everything but air,
* not sure yet! Still a TODO! */
/* return check adjacent blocks with air, bit inverted */
// shift up 4 bits because the lower 4 bits encode color
data = (check_adjacent_blocks(state, x, y, z, 0) ^ 0x0f);
return (data << 4) | (ancilData & 0xf);
} else if (block_class_is_subset(state->block, (mc_block_t[]){block_portal, block_nether_brick_fence}, 2)) {
/* portal and nether brick fences */
return check_adjacent_blocks(state, x, y, z, state->block);
} else if (block_class_is_subset(state->block, block_class_door, block_class_door_len)) {
/* use bottom block data format plus one bit for top/down
* block (0x8) and one bit for hinge position (0x10)
*/
unsigned char data = 0;
if ((ancilData & 0x8) == 0x8) {
/* top door block */
unsigned char b_data = get_data(state, DATA, x, y - 1, z);
if ((ancilData & 0x1) == 0x1) {
/* hinge on the left */
data = b_data | 0x8 | 0x10;
} else {
data = b_data | 0x8;
}
} else {
/* bottom door block */
unsigned char t_data = get_data(state, DATA, x, y + 1, z);
if ((t_data & 0x1) == 0x1) {
/* hinge on the left */
data = ancilData | 0x10;
} else {
data = ancilData;
}
}
return data;
} else if (state->block == block_cobblestone_wall) {
/* check for walls and add one bit with the type of wall (mossy or cobblestone)*/
if (ancilData == 0x1) {
return check_adjacent_blocks(state, x, y, z, state->block) | 0x10;
} else {
return check_adjacent_blocks(state, x, y, z, state->block);
}
} else if (state->block == block_waterlily) {
int wx, wz, wy, rotation;
long pr;
/* calculate the global block coordinates of this position */
wx = (state->chunkx * 16) + x;
wz = (state->chunkz * 16) + z;
wy = (state->chunky * 16) + y;
/* lilypads orientation is obtained with these magic numbers */
/* magic numbers obtained from: */
/* http://llbit.se/?p=1537 */
pr = (wx * 3129871) ^ (wz * 116129781) ^ (wy);
pr = pr * pr * 42317861 + pr * 11;
rotation = 3 & (pr >> 16);
return rotation;
} else if (block_class_is_subset(state->block, block_class_stair, block_class_stair_len)) { /* stairs */
/* 4 ancillary bits will be added to indicate which quarters of the block contain the
* upper step. Regular stairs will have 2 bits set & corner stairs will have 1 or 3.
* Southwest quarter is part of the upper step - 0x40
* / Southeast " - 0x20
* |/ Northeast " - 0x10
* ||/ Northwest " - 0x8
* |||/ flip upside down (Minecraft)
* ||||/ has North/South alignment (Minecraft)
* |||||/ ascends North or West, not South or East (Minecraft)
* ||||||/
* 0b0011011 = Stair ascending north, upside up, with both north quarters filled
*/
/* keep track of whether neighbors are stairs, and their data */
unsigned char stairs_base[8];
unsigned char neigh_base[8];
unsigned char* stairs = stairs_base;
unsigned char* neigh = neigh_base;
/* amount to rotate/roll to get to east, west, south, north */
size_t rotations[] = {0, 2, 3, 1};
/* masks for the filled (ridge) stair quarters: */
/* Example: the ridge for an east-ascending stair are the two east quarters */
/* ascending: east west south north */
unsigned char ridge_mask[] = {0x30, 0x48, 0x60, 0x18};
/* masks for the open (trench) stair quarters: */
unsigned char trench_mask[] = {0x48, 0x30, 0x18, 0x60};
/* boat analogy! up the stairs is toward the bow of the boat */
/* masks for port and starboard, i.e. left and right sides while ascending: */
unsigned char port_mask[] = {0x18, 0x60, 0x30, 0x48};
unsigned char starboard_mask[] = {0x60, 0x18, 0x48, 0x30};
/* we may need to lock some quarters into place depending on neighbors */
unsigned char lock_mask = 0;
unsigned char repair_rot[] = {0, 1, 2, 3, 2, 3, 1, 0, 1, 0, 3, 2, 3, 2, 0, 1};
/* need to get northdirection of the render */
/* TODO: get this just once? store in state? */
PyObject* texrot;
int northdir;
texrot = PyObject_GetAttrString(state->textures, "rotation");
northdir = PyLong_AsLong(texrot);
/* fix the rotation value for different northdirections */
#define FIX_ROT(x) (((x) & ~0x3) | repair_rot[((x)&0x3) | (northdir << 2)])
ancilData = FIX_ROT(ancilData);
/* fill the ancillary bits assuming normal stairs with no corner yet */
ancilData |= ridge_mask[ancilData & 0x3];
/* get block & data for neighbors in this order: east, north, west, south */
/* so we can rotate things easily */
stairs[0] = stairs[4] = block_class_is_subset(get_data(state, BLOCKS, x + 1, y, z), block_class_stair, block_class_stair_len);
stairs[1] = stairs[5] = block_class_is_subset(get_data(state, BLOCKS, x, y, z - 1), block_class_stair, block_class_stair_len);
stairs[2] = stairs[6] = block_class_is_subset(get_data(state, BLOCKS, x - 1, y, z), block_class_stair, block_class_stair_len);
stairs[3] = stairs[7] = block_class_is_subset(get_data(state, BLOCKS, x, y, z + 1), block_class_stair, block_class_stair_len);
neigh[0] = neigh[4] = FIX_ROT(get_data(state, DATA, x + 1, y, z));
neigh[1] = neigh[5] = FIX_ROT(get_data(state, DATA, x, y, z - 1));
neigh[2] = neigh[6] = FIX_ROT(get_data(state, DATA, x - 1, y, z));
neigh[3] = neigh[7] = FIX_ROT(get_data(state, DATA, x, y, z + 1));
#undef FIX_ROT
/* Rotate the neighbors so we only have to worry about one orientation
* No matter which way the boat is facing, the the neighbors will be:
* 0: bow
* 1: port
* 2: stern
* 3: starboard */
stairs += rotations[ancilData & 0x3];
neigh += rotations[ancilData & 0x3];
/* Matching neighbor stairs to the sides should prevent cornering on that side */
/* If found, set bits in lock_mask to lock the current quarters as they are */
if (stairs[1] && (neigh[1] & 0x7) == (ancilData & 0x7)) {
/* Neighbor on port side is stairs of the same orientation as me */
/* Do NOT allow changing quarters on the port side */
lock_mask |= port_mask[ancilData & 0x3];
}
if (stairs[3] && (neigh[3] & 0x7) == (ancilData & 0x7)) {
/* Neighbor on starboard side is stairs of the same orientation as me */
/* Do NOT allow changing quarters on the starboard side */
lock_mask |= starboard_mask[ancilData & 0x3];
}
/* Make corner stairs -- prefer outside corners like Minecraft */
if (stairs[0] && (neigh[0] & 0x4) == (ancilData & 0x4)) {
/* neighbor at bow is stairs with same flip */
if ((neigh[0] & 0x2) != (ancilData & 0x2)) {
/* neighbor is perpendicular, cut a trench, but not where locked */
ancilData &= ~trench_mask[neigh[0] & 0x3] | lock_mask;
}
} else if (stairs[2] && (neigh[2] & 0x4) == (ancilData & 0x4)) {
/* neighbor at stern is stairs with same flip */
if ((neigh[2] & 0x2) != (ancilData & 0x2)) {
/* neighbor is perpendicular, add a ridge, but not where locked */
ancilData |= ridge_mask[neigh[2] & 0x3] & ~lock_mask;
}
}
return ancilData;
} else if (state->block == block_double_plant) { /* doublePlants */
/* use bottom block data format plus one bit for top
* block (0x8)
*/
if (get_data(state, BLOCKS, x, y - 1, z) == block_double_plant) {
data = get_data(state, DATA, x, y - 1, z) | 0x8;
} else {
data = ancilData;
}
return data;
}
return 0;
}
/* TODO triple check this to make sure reference counting is correct */
PyObject*
chunk_render(PyObject* self, PyObject* args) {
RenderState state;
PyObject* modeobj;
PyObject* blockmap;
int xoff, yoff;
PyObject *imgsize, *imgsize0_py, *imgsize1_py;
int imgsize0, imgsize1;
PyArrayObject* blocks_py;
PyArrayObject* left_blocks_py;
PyArrayObject* right_blocks_py;
PyArrayObject* up_left_blocks_py;
PyArrayObject* up_right_blocks_py;
RenderMode* rendermode;
int i, j;
PyObject* t = NULL;
if (!PyArg_ParseTuple(args, "OOiiiOiiOO", &state.world, &state.regionset, &state.chunkx, &state.chunky, &state.chunkz, &state.img, &xoff, &yoff, &modeobj, &state.textures))
return NULL;
/* set up the render mode */
state.rendermode = rendermode = render_mode_create(modeobj, &state);
if (rendermode == NULL) {
return NULL; // note that render_mode_create will
// set PyErr. No need to set it here
}
/* get the blockmap from the textures object */
blockmap = PyObject_GetAttrString(state.textures, "blockmap");
if (blockmap == NULL) {
render_mode_destroy(rendermode);
return NULL;
}
if (blockmap == Py_None) {
render_mode_destroy(rendermode);
PyErr_SetString(PyExc_RuntimeError, "you must call Textures.generate()");
return NULL;
}
/* get the image size */
imgsize = PyObject_GetAttrString(state.img, "size");
imgsize0_py = PySequence_GetItem(imgsize, 0);
imgsize1_py = PySequence_GetItem(imgsize, 1);
Py_DECREF(imgsize);
imgsize0 = PyLong_AsLong(imgsize0_py);
imgsize1 = PyLong_AsLong(imgsize1_py);
Py_DECREF(imgsize0_py);
Py_DECREF(imgsize1_py);
/* set all block data to unloaded */
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
state.chunks[i][j].loaded = 0;
}
}
/* get the block data for the center column, erroring out if needed */
if (load_chunk(&state, 0, 0, 1)) {
render_mode_destroy(rendermode);
Py_DECREF(blockmap);
return NULL;
}
if (state.chunks[1][1].sections[state.chunky].blocks == NULL) {
/* this section doesn't exist, let's skeddadle */
render_mode_destroy(rendermode);
Py_DECREF(blockmap);
unload_all_chunks(&state);
Py_RETURN_NONE;
}
/* set blocks_py, state.blocks, and state.blockdatas as convenience */
blocks_py = state.blocks = state.chunks[1][1].sections[state.chunky].blocks;
state.blockdatas = state.chunks[1][1].sections[state.chunky].data;
/* set up the random number generator again for each chunk
so tallgrass is in the same place, no matter what mode is used */
srand(1);
for (state.x = 15; state.x > -1; state.x--) {
for (state.z = 0; state.z < 16; state.z++) {
/* set up the render coordinates */
state.imgx = xoff + state.x * 12 + state.z * 12;
/* 16*12 -- offset for y direction, 15*6 -- offset for x */
state.imgy = yoff - state.x * 6 + state.z * 6 + 16 * 12 + 15 * 6;
for (state.y = 0; state.y < 16; state.y++) {
unsigned short ancilData;
state.imgy -= 12;
/* get blockid */
state.block = getArrayShort3D(blocks_py, state.x, state.y, state.z);
if (state.block == block_air || render_mode_hidden(rendermode, state.x, state.y, state.z)) {
continue;
}
/* make sure we're rendering inside the image boundaries */
if ((state.imgx >= imgsize0 + 24) || (state.imgx <= -24)) {
continue;
}
if ((state.imgy >= imgsize1 + 24) || (state.imgy <= -24)) {
continue;
}
/* check for occlusion */
if (render_mode_occluded(rendermode, state.x, state.y, state.z)) {
continue;
}
/* everything stored here will be a borrowed ref */
if (block_has_property(state.block, NODATA)) {
/* block shouldn't have data associated with it, set it to 0 */
ancilData = 0;
state.block_data = 0;
state.block_pdata = 0;
} else {
/* block has associated data, use it */
ancilData = getArrayByte3D(state.blockdatas, state.x, state.y, state.z);
state.block_data = ancilData;
/* block that need pseudo ancildata:
* grass, water, glass, chest, restone wire,
* ice, fence, portal, iron bars, glass panes,
* trapped chests, stairs */
if (block_class_is_subset(state.block, block_class_ancil, block_class_ancil_len)) {
ancilData = generate_pseudo_data(&state, ancilData);
state.block_pdata = ancilData;
} else {
state.block_pdata = 0;
}
}
/* make sure our block info is in-bounds */
if (state.block >= max_blockid || ancilData >= max_data)
continue;
/* get the texture */
t = PyList_GET_ITEM(blockmap, max_data * state.block + ancilData);
/* if we don't get a texture, try it again with 0 data */
if ((t == NULL || t == Py_None) && ancilData != 0)
t = PyList_GET_ITEM(blockmap, max_data * state.block);
/* if we found a proper texture, render it! */
if (t != NULL && t != Py_None) {
PyObject *src, *mask, *mask_light;
int do_rand = (state.block == block_tallgrass /*|| state.block == block_red_flower || state.block == block_double_plant*/);
int randx = 0, randy = 0;
src = PyTuple_GetItem(t, 0);
mask = PyTuple_GetItem(t, 0);
mask_light = PyTuple_GetItem(t, 1);
if (mask == Py_None)
mask = src;
if (do_rand) {
/* add a random offset to the postion of the tall grass to make it more wild */
randx = rand() % 6 + 1 - 3;
randy = rand() % 6 + 1 - 3;
state.imgx += randx;
state.imgy += randy;
}
render_mode_draw(rendermode, src, mask, mask_light);
if (do_rand) {
/* undo the random offsets */
state.imgx -= randx;
state.imgy -= randy;
}
}
}
}
}
/* free up the rendermode info */
render_mode_destroy(rendermode);
Py_DECREF(blockmap);
unload_all_chunks(&state);
Py_RETURN_NONE;
}