Minecraft-Overviewer/overviewer_core/src/primitives/lighting.c

341 lines
12 KiB
C

/*
* This file is part of the Minecraft Overviewer.
*
* Minecraft Overviewer is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Minecraft Overviewer is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with the Overviewer. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include "lighting.h"
#include "../block_class.h"
#include "../mc_id.h"
#include "../overviewer.h"
/* figures out the color from a given skylight and blocklight,
used in lighting calculations */
static void
calculate_light_color(void* data,
unsigned char skylight, unsigned char blocklight,
unsigned char* r, unsigned char* g, unsigned char* b) {
unsigned char v = 255 * powf(0.8f, 15.0 - OV_MAX(blocklight, skylight));
*r = v;
*g = v;
*b = v;
}
/* fancy version that uses the colored light texture */
static void
calculate_light_color_fancy(void* data,
unsigned char skylight, unsigned char blocklight,
unsigned char* r, unsigned char* g, unsigned char* b) {
RenderPrimitiveLighting* mode = (RenderPrimitiveLighting*)(data);
unsigned int index;
PyObject* color;
blocklight = OV_MAX(blocklight, skylight);
index = skylight + blocklight * 16;
color = PySequence_GetItem(mode->lightcolor, index);
*r = PyLong_AsLong(PyTuple_GET_ITEM(color, 0));
*g = PyLong_AsLong(PyTuple_GET_ITEM(color, 1));
*b = PyLong_AsLong(PyTuple_GET_ITEM(color, 2));
Py_DECREF(color);
}
/* figures out the color from a given skylight and blocklight, used in
lighting calculations -- note this is *different* from the one above
(the "skylight - 11" part)
*/
static void
calculate_light_color_night(void* data,
unsigned char skylight, unsigned char blocklight,
unsigned char* r, unsigned char* g, unsigned char* b) {
unsigned char v = 255 * powf(0.8f, 15.0 - OV_MAX(blocklight, skylight - 11));
*r = v;
*g = v;
*b = v;
}
/* fancy night version that uses the colored light texture */
static void
calculate_light_color_fancy_night(void* data,
unsigned char skylight, unsigned char blocklight,
unsigned char* r, unsigned char* g, unsigned char* b) {
RenderPrimitiveLighting* mode = (RenderPrimitiveLighting*)(data);
unsigned int index;
PyObject* color;
index = skylight + blocklight * 16;
color = PySequence_GetItem(mode->lightcolor, index);
*r = PyLong_AsLong(PyTuple_GET_ITEM(color, 0));
*g = PyLong_AsLong(PyTuple_GET_ITEM(color, 1));
*b = PyLong_AsLong(PyTuple_GET_ITEM(color, 2));
Py_DECREF(color);
}
/* loads the appropriate light data for the given (possibly non-local)
* coordinates, and returns a black_coeff this is exposed, so other (derived)
* rendermodes can use it
*
* authoratative is a return slot for whether or not this lighting calculation
* is true, or a guess. If we guessed, *authoratative will be false, but if it
* was calculated correctly from available light data, it will be true. You
* may (and probably should) pass NULL.
*/
unsigned char
estimate_blocklevel(RenderPrimitiveLighting* self, RenderState* state,
int x, int y, int z, int* authoratative) {
/* placeholders for later data arrays, coordinates */
unsigned short block;
unsigned char blocklevel;
unsigned int average_count = 0, average_gather = 0, coeff = 0;
/* defaults to "guess" until told otherwise */
if (authoratative)
*authoratative = 0;
block = get_data(state, BLOCKS, x, y, z);
if (authoratative == NULL) {
int auth;
/* iterate through all surrounding blocks to take an average */
int dx, dy, dz, local_block;
for (dx = -1; dx <= 1; dx += 2) {
for (dy = -1; dy <= 1; dy += 2) {
for (dz = -1; dz <= 1; dz += 2) {
coeff = estimate_blocklevel(self, state, x + dx, y + dy, z + dz, &auth);
local_block = get_data(state, BLOCKS, x + dx, y + dy, z + dz);
/* only add if the block is transparent, this seems to look better than
using every block */
if (auth && is_transparent(local_block)) {
average_gather += coeff;
average_count++;
}
}
}
}
}
/* only return the average if at least one was authoratative */
if (average_count > 0) {
return average_gather / average_count;
}
blocklevel = get_data(state, BLOCKLIGHT, x, y, z);
/* no longer a guess */
if (!block_class_is_subset(block, block_class_alt_height, block_class_alt_height_len) && authoratative) {
*authoratative = 1;
}
return blocklevel;
}
inline void
get_lighting_color(RenderPrimitiveLighting* self, RenderState* state,
int x, int y, int z,
unsigned char* r, unsigned char* g, unsigned char* b) {
/* placeholders for later data arrays, coordinates */
unsigned short block;
unsigned char skylevel, blocklevel;
block = get_data(state, BLOCKS, x, y, z);
skylevel = get_data(state, SKYLIGHT, x, y, z);
blocklevel = get_data(state, BLOCKLIGHT, x, y, z);
/* special half-step handling, stairs handling */
/* Anvil also needs to be here, blockid 145 */
if (block_class_is_subset(block, block_class_alt_height, block_class_alt_height_len) || block == block_anvil) {
unsigned int upper_block;
/* stairs and half-blocks take the skylevel from the upper block if it's transparent */
int upper_counter = 0;
/* but if the upper_block is one of these special half-steps, we need to look at *its* upper_block */
do {
upper_counter++;
upper_block = get_data(state, BLOCKS, x, y + upper_counter, z);
} while (block_class_is_subset(upper_block, block_class_alt_height, block_class_alt_height_len));
if (is_transparent(upper_block)) {
skylevel = get_data(state, SKYLIGHT, x, y + upper_counter, z);
} else {
skylevel = 15;
}
/* the block has a bad blocklevel, estimate it from neigborhood
* use given coordinates, no local ones! */
blocklevel = estimate_blocklevel(self, state, x, y, z, NULL);
}
if (block_class_is_subset(block, (mc_block_t[]){block_flowing_lava, block_lava}, 2)) {
/* lava blocks should always be lit! */
*r = 255;
*g = 255;
*b = 255;
return;
}
self->calculate_light_color(self, OV_MIN(skylevel, 15), OV_MIN(blocklevel, 15), r, g, b);
}
/* does per-face occlusion checking for do_shading_with_mask */
inline int
lighting_is_face_occluded(RenderState* state, int skip_sides, int x, int y, int z) {
/* first, check for occlusion if the block is in the local chunk */
if (x >= 0 && x < 16 && y >= 0 && y < 16 && z >= 0 && z < 16) {
unsigned short block = getArrayShort3D(state->blocks, x, y, z);
if (!is_transparent(block) && !render_mode_hidden(state->rendermode, x, y, z)) {
/* this face isn't visible, so don't draw anything */
return 1;
}
} else if (!skip_sides) {
unsigned short block = get_data(state, BLOCKS, x, y, z);
if (!is_transparent(block)) {
/* the same thing but for adjacent chunks, this solves an
ugly black doted line between chunks in night rendermode.
This wouldn't be necessary if the textures were truly
tessellate-able */
return 1;
}
}
return 0;
}
/* shades the drawn block with the given facemask, based on the
lighting results from (x, y, z) */
static inline void
do_shading_with_mask(RenderPrimitiveLighting* self, RenderState* state,
int x, int y, int z, PyObject* mask) {
unsigned char r, g, b;
float comp_strength;
/* check occlusion */
if (lighting_is_face_occluded(state, self->skip_sides, x, y, z))
return;
get_lighting_color(self, state, x, y, z, &r, &g, &b);
comp_strength = 1.0 - self->strength;
r += (255 - r) * comp_strength;
g += (255 - g) * comp_strength;
b += (255 - b) * comp_strength;
tint_with_mask(state->img, r, g, b, 255, mask, state->imgx, state->imgy, 0, 0);
}
static int
lighting_start(void* data, RenderState* state, PyObject* support) {
RenderPrimitiveLighting* self;
self = (RenderPrimitiveLighting*)data;
/* don't skip sides by default */
self->skip_sides = 0;
if (!render_mode_parse_option(support, "strength", "f", &(self->strength)))
return 1;
if (!render_mode_parse_option(support, "night", "i", &(self->night)))
return 1;
if (!render_mode_parse_option(support, "color", "i", &(self->color)))
return 1;
self->facemasks_py = PyObject_GetAttrString(support, "facemasks");
// borrowed references, don't need to be decref'd
self->facemasks[0] = PyTuple_GetItem(self->facemasks_py, 0);
self->facemasks[1] = PyTuple_GetItem(self->facemasks_py, 1);
self->facemasks[2] = PyTuple_GetItem(self->facemasks_py, 2);
if (self->night) {
self->calculate_light_color = calculate_light_color_night;
} else {
self->calculate_light_color = calculate_light_color;
}
if (self->color) {
self->lightcolor = PyObject_CallMethod(state->textures, "load_light_color", "");
if (self->lightcolor == Py_None) {
Py_DECREF(self->lightcolor);
self->lightcolor = NULL;
self->color = 0;
} else {
if (self->night) {
self->calculate_light_color = calculate_light_color_fancy_night;
} else {
self->calculate_light_color = calculate_light_color_fancy;
}
}
} else {
self->lightcolor = NULL;
}
return 0;
}
static void
lighting_finish(void* data, RenderState* state) {
RenderPrimitiveLighting* self = (RenderPrimitiveLighting*)data;
Py_DECREF(self->facemasks_py);
}
static void
lighting_draw(void* data, RenderState* state, PyObject* src, PyObject* mask, PyObject* mask_light) {
RenderPrimitiveLighting* self;
int x, y, z;
self = (RenderPrimitiveLighting*)data;
x = state->x, y = state->y, z = state->z;
if (block_class_is_subset(state->block, (mc_block_t[]){block_flowing_water, block_water}, 2)) { /* special case for water */
/* looks like we need a new case for lighting, there are
* blocks that are transparent for occlusion calculations and
* need per-face shading if the face is drawn. */
if ((state->block_pdata & 16) == 16) {
do_shading_with_mask(self, state, x, y + 1, z, self->facemasks[0]);
}
if ((state->block_pdata & 2) == 2) { /* bottom left */
do_shading_with_mask(self, state, x - 1, y, z, self->facemasks[1]);
}
if ((state->block_pdata & 4) == 4) { /* bottom right */
do_shading_with_mask(self, state, x, y, z + 1, self->facemasks[2]);
}
/* leaves and ice are transparent for occlusion calculations but they
* per face-shading to look as in game */
} else if (is_transparent(state->block) && (state->block != 18) && (state->block != 79)) {
/* transparent: do shading on whole block */
do_shading_with_mask(self, state, x, y, z, mask_light);
} else {
/* opaque: do per-face shading */
do_shading_with_mask(self, state, x, y + 1, z, self->facemasks[0]);
do_shading_with_mask(self, state, x - 1, y, z, self->facemasks[1]);
do_shading_with_mask(self, state, x, y, z + 1, self->facemasks[2]);
}
}
RenderPrimitiveInterface primitive_lighting = {
"lighting",
sizeof(RenderPrimitiveLighting),
lighting_start,
lighting_finish,
NULL,
NULL,
lighting_draw,
};