0
This repository has been archived on 2025-04-25. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
Minecraft-Overviewer/overviewer_core/rendernode.py
2011-11-08 15:31:01 -05:00

375 lines
15 KiB
Python

# This file is part of the Minecraft Overviewer.
#
# Minecraft Overviewer is free software: you can redistribute it and/or
# modify it under the terms of the GNU General Public License as published
# by the Free Software Foundation, either version 3 of the License, or (at
# your option) any later version.
#
# Minecraft Overviewer is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with the Overviewer. If not, see <http://www.gnu.org/licenses/>.
import multiprocessing
import Queue
import os
import os.path
import functools
import collections
import logging
import time
from . import textures
from . import util
import c_overviewer
"""
This module has routines related to distributing the render job to multiple nodes
"""
def catch_keyboardinterrupt(func):
"""Decorator that catches a keyboardinterrupt and raises a real exception
so that multiprocessing will propagate it properly"""
@functools.wraps(func)
def newfunc(*args, **kwargs):
try:
return func(*args, **kwargs)
except KeyboardInterrupt:
logging.error("Ctrl-C caught!")
raise Exception("Exiting")
except:
import traceback
traceback.print_exc()
raise
return newfunc
child_rendernode = None
def pool_initializer(rendernode):
logging.debug("Child process {0}".format(os.getpid()))
#stash the quadtree objects in a global variable after fork() for windows compat.
global child_rendernode
child_rendernode = rendernode
# make sure textures are generated for this process
# and initialize c_overviewer
textures.generate(path=rendernode.options.get('textures_path', None),
north_direction=rendernode.options.get('north_direction', None))
c_overviewer.init_chunk_render()
# setup c_overviewer rendermode customs / options
for mode in rendernode.options.custom_rendermodes:
c_overviewer.add_custom_render_mode(mode, rendernode.options.custom_rendermodes[mode])
for mode in rendernode.options.rendermode_options:
c_overviewer.set_render_mode_options(mode, rendernode.options.rendermode_options[mode])
# load biome data in each process, if needed
for quadtree in rendernode.quadtrees:
if quadtree.world.useBiomeData:
# make sure we've at least *tried* to load the color arrays in this process...
textures.prepareBiomeData(quadtree.world.worlddir)
if not textures.grasscolor or not textures.foliagecolor:
raise Exception("Can't find grasscolor.png or foliagecolor.png")
# only load biome data once
break
class RenderNode(object):
def __init__(self, quadtrees, options):
"""Distributes the rendering of a list of quadtrees."""
if not len(quadtrees) > 0:
raise ValueError("there must be at least one quadtree to work on")
self.options = options
# A list of quadtree.QuadTree objects representing each rendermode
# requested
self.quadtrees = quadtrees
#List of changed tiles
self.rendered_tiles = []
#bind an index value to the quadtree so we can find it again
#and figure out which worlds are where
self.worlds = []
for i, q in enumerate(quadtrees):
q._render_index = i
i += 1
if q.world not in self.worlds:
self.worlds.append(q.world)
manager = multiprocessing.Manager()
# queue for receiving interesting events from the renderer
# (like the discovery of signs!
#stash into the world object like we stash an index into the quadtree
for world in self.worlds:
world.poi_q = manager.Queue()
def print_statusline(self, complete, total, level, unconditional=False):
if unconditional:
pass
elif complete < 100:
if not complete % 25 == 0:
return
elif complete < 1000:
if not complete % 100 == 0:
return
else:
if not complete % 1000 == 0:
return
logging.info("{0}/{1} ({4}%) tiles complete on level {2}/{3}".format(
complete, total, level, self.max_p, '%.1f' % ( (100.0 * complete) / total) ))
def go(self, procs):
"""Renders all tiles"""
logging.debug("Parent process {0}".format(os.getpid()))
# Create a pool
if procs == 1:
pool = FakePool()
pool_initializer(self)
else:
pool_initializer(self)
pool = multiprocessing.Pool(processes=procs,initializer=pool_initializer,initargs=(self,))
#warm up the pool so it reports all the worker id's
if logging.getLogger().level >= 10:
pool.map(bool,xrange(multiprocessing.cpu_count()),1)
else:
pool.map_async(bool,xrange(multiprocessing.cpu_count()),1)
# 1 quadtree object per rendermode requested
quadtrees = self.quadtrees
# Determine the total number of tiles by adding up the number of tiles
# from each quadtree. Also find the max zoom level (max_p). Even though
# each quadtree will always have the same zoom level, this bit of code
# does not make that assumption.
max_p = 0
total = 0
for q in quadtrees:
total += 4**q.p
if q.p > max_p:
max_p = q.p
self.max_p = max_p
# The next sections of code render the highest zoom level of tiles. The
# section after render the other levels.
results = collections.deque()
complete = 0
logging.info("Rendering highest zoom level of tiles now.")
logging.info("Rendering {0} layer{1}".format(len(quadtrees),'s' if len(quadtrees) > 1 else '' ))
logging.info("There are {0} tiles to render".format(total))
logging.info("There are {0} total levels to render".format(self.max_p))
logging.info("Don't worry, each level has only 25% as many tiles as the last.")
logging.info("The others will go faster")
count = 0
batch_size = 4*len(quadtrees)
while batch_size < 10:
batch_size *= 2
timestamp = time.time()
for result in self._apply_render_worldtiles(pool,batch_size):
results.append(result)
# every second drain some of the queue
timestamp2 = time.time()
if timestamp2 >= timestamp + 1:
timestamp = timestamp2
count_to_remove = (1000//batch_size)
if count_to_remove < len(results):
for world in self.worlds:
try:
while (1):
# an exception will break us out of this loop
item = world.poi_q.get(block=False)
if item[0] == "newpoi":
if item[1] not in world.POI:
#print "got an item from the queue!"
world.POI.append(item[1])
elif item[0] == "removePOI":
world.persistentData['POI'] = filter(lambda x: x['chunk'] != item[1], world.persistentData['POI'])
elif item[0] == "rendered":
self.rendered_tiles.append(item[1])
except Queue.Empty:
pass
while count_to_remove > 0:
count_to_remove -= 1
complete += results.popleft().get()
self.print_statusline(complete, total, 1)
if len(results) > (10000//batch_size):
# Empty the queue before adding any more, so that memory
# required has an upper bound
while len(results) > (500//batch_size):
complete += results.popleft().get()
self.print_statusline(complete, total, 1)
# Wait for the rest of the results
while len(results) > 0:
complete += results.popleft().get()
self.print_statusline(complete, total, 1)
for world in self.worlds:
try:
while (1):
# an exception will break us out of this loop
item = world.poi_q.get(block=False)
if item[0] == "newpoi":
if item[1] not in world.POI:
#print "got an item from the queue!"
world.POI.append(item[1])
elif item[0] == "removePOI":
world.persistentData['POI'] = filter(lambda x: x['chunk'] != item[1], world.persistentData['POI'])
elif item[0] == "rendered":
self.rendered_tiles.append(item[1])
except Queue.Empty:
pass
self.print_statusline(complete, total, 1, True)
# The highest zoom level has been rendered.
# Now do the lower zoom levels
for zoom in xrange(self.max_p-1, 0, -1):
level = self.max_p - zoom + 1
assert len(results) == 0
complete = 0
total = 0
for q in quadtrees:
if zoom <= q.p:
total += 4**zoom
logging.info("Starting level {0}".format(level))
timestamp = time.time()
for result in self._apply_render_inntertile(pool, zoom,batch_size):
results.append(result)
# every second drain some of the queue
timestamp2 = time.time()
if timestamp2 >= timestamp + 1:
timestamp = timestamp2
count_to_remove = (1000//batch_size)
if count_to_remove < len(results):
while count_to_remove > 0:
count_to_remove -= 1
complete += results.popleft().get()
self.print_statusline(complete, total, level)
if len(results) > (10000/batch_size):
while len(results) > (500/batch_size):
complete += results.popleft().get()
self.print_statusline(complete, total, level)
# Empty the queue
while len(results) > 0:
complete += results.popleft().get()
self.print_statusline(complete, total, level)
self.print_statusline(complete, total, level, True)
logging.info("Done")
pool.close()
pool.join()
# Do the final one right here:
for q in quadtrees:
q.render_innertile(os.path.join(q.destdir, q.tiledir), "base")
def _apply_render_worldtiles(self, pool,batch_size):
"""Adds tiles to the render queue and dispatch them to the worker pool.
Returns an iterator over result objects. Each time a new result is
requested, a new batch of tasks are added to the pool and a result
object is returned.
"""
if batch_size < len(self.quadtrees):
batch_size = len(self.quadtrees)
batch = []
jobcount = 0
# roundrobin add tiles to a batch job (thus they should all roughly work on similar chunks)
iterables = [q.get_worldtiles() for q in self.quadtrees]
for job in util.roundrobin(iterables):
# fixup so the worker knows which quadtree this is
job[0] = job[0]._render_index
# Put this in the batch to be submited to the pool
batch.append(job)
jobcount += 1
if jobcount >= batch_size:
jobcount = 0
yield pool.apply_async(func=render_worldtile_batch, args= [batch])
batch = []
if jobcount > 0:
yield pool.apply_async(func=render_worldtile_batch, args= [batch])
def _apply_render_inntertile(self, pool, zoom,batch_size):
"""Same as _apply_render_worltiles but for the inntertile routine.
Returns an iterator that yields result objects from tasks that have
been applied to the pool.
"""
if batch_size < len(self.quadtrees):
batch_size = len(self.quadtrees)
batch = []
jobcount = 0
# roundrobin add tiles to a batch job (thus they should all roughly work on similar chunks)
iterables = [q.get_innertiles(zoom) for q in self.quadtrees if zoom <= q.p]
for job in util.roundrobin(iterables):
# fixup so the worker knows which quadtree this is
job[0] = job[0]._render_index
# Put this in the batch to be submited to the pool
batch.append(job)
jobcount += 1
if jobcount >= batch_size:
jobcount = 0
yield pool.apply_async(func=render_innertile_batch, args= [batch])
batch = []
if jobcount > 0:
yield pool.apply_async(func=render_innertile_batch, args= [batch])
@catch_keyboardinterrupt
def render_worldtile_batch(batch):
# batch is a list of items to process. Each item is [quadtree_id, Tile object]
global child_rendernode
rendernode = child_rendernode
count = 0
#logging.debug("{0} working on batch of size {1}".format(os.getpid(),len(batch)))
for job in batch:
count += 1
quadtree = rendernode.quadtrees[job[0]]
tile = job[1]
quadtree.render_worldtile(tile)
return count
@catch_keyboardinterrupt
def render_innertile_batch(batch):
global child_rendernode
rendernode = child_rendernode
count = 0
#logging.debug("{0} working on batch of size {1}".format(os.getpid(),len(batch)))
for job in batch:
count += 1
quadtree = rendernode.quadtrees[job[0]]
dest = quadtree.full_tiledir+os.sep+job[1]
quadtree.render_innertile(dest=dest,name=job[2])
return count
class FakeResult(object):
def __init__(self, res):
self.res = res
def get(self):
return self.res
class FakePool(object):
"""A fake pool used to render things in sync. Implements a subset of
multiprocessing.Pool"""
def apply_async(self, func, args=(), kwargs=None):
if not kwargs:
kwargs = {}
result = func(*args, **kwargs)
return FakeResult(result)
def close(self):
pass
def join(self):
pass