0
This repository has been archived on 2025-04-25. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
Minecraft-Overviewer/overviewer_core/src/composite.c
Aaron Griffith 383b01859f Merge branch 'master' into py-package
Conflicts:
	overviewer_core/data/config.js
	overviewer_core/data/web_assets/functions.js
	overviewer_core/data/web_assets/style.css
	setup.py
	web_assets/overviewer.css
	web_assets/style.css
2011-05-10 20:19:10 -04:00

361 lines
12 KiB
C

/*
* This file is part of the Minecraft Overviewer.
*
* Minecraft Overviewer is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Minecraft Overviewer is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with the Overviewer. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* This file implements a custom alpha_over function for (some) PIL
* images. It's designed to be used through composite.py, which
* includes a proxy alpha_over function that falls back to the default
* PIL paste if this extension is not found.
*/
#include "overviewer.h"
/* like (a * b + 127) / 255), but much faster on most platforms
from PIL's _imaging.c */
#define MULDIV255(a, b, tmp) \
(tmp = (a) * (b) + 128, ((((tmp) >> 8) + (tmp)) >> 8))
typedef struct {
PyObject_HEAD
Imaging image;
} ImagingObject;
inline Imaging
imaging_python_to_c(PyObject *obj)
{
PyObject *im;
Imaging image;
/* first, get the 'im' attribute */
im = PyObject_GetAttrString(obj, "im");
if (!im)
return NULL;
/* make sure 'im' is the right type */
if (strcmp(im->ob_type->tp_name, "ImagingCore") != 0) {
/* it's not -- raise an error and exit */
PyErr_SetString(PyExc_TypeError,
"image attribute 'im' is not a core Imaging type");
return NULL;
}
image = ((ImagingObject *)im)->image;
Py_DECREF(im);
return image;
}
/* helper function to setup s{x,y}, d{x,y}, and {x,y}size variables
in these composite functions -- even handles auto-sizing to src! */
static inline void
setup_source_destination(Imaging src, Imaging dest,
int *sx, int *sy, int *dx, int *dy, int *xsize, int *ysize)
{
/* handle negative/zero sizes appropriately */
if (*xsize <= 0 || *ysize <= 0) {
*xsize = src->xsize;
*ysize = src->ysize;
}
/* set up the source position, size and destination position */
/* handle negative dest pos */
if (*dx < 0) {
*sx = -(*dx);
*dx = 0;
} else {
*sx = 0;
}
if (*dy < 0) {
*sy = -(*dy);
*dy = 0;
} else {
*sy = 0;
}
/* set up source dimensions */
*xsize -= *sx;
*ysize -= *sy;
/* clip dimensions, if needed */
if (*dx + *xsize > dest->xsize)
*xsize = dest->xsize - *dx;
if (*dy + *ysize > dest->ysize)
*ysize = dest->ysize - *dy;
}
/* convenience alpha_over with 1.0 as overall_alpha */
inline PyObject* alpha_over(PyObject *dest, PyObject *src, PyObject *mask,
int dx, int dy, int xsize, int ysize) {
return alpha_over_full(dest, src, mask, 1.0f, dx, dy, xsize, ysize);
}
/* the full alpha_over function, in a form that can be called from C
* overall_alpha is multiplied with the whole mask, useful for lighting...
* if xsize, ysize are negative, they are instead set to the size of the image in src
* returns NULL on error, dest on success. You do NOT need to decref the return!
*/
inline PyObject *
alpha_over_full(PyObject *dest, PyObject *src, PyObject *mask, float overall_alpha,
int dx, int dy, int xsize, int ysize) {
/* libImaging handles */
Imaging imDest, imSrc, imMask;
/* cached blend properties */
int src_has_alpha, mask_offset, mask_stride;
/* source position */
int sx, sy;
/* iteration variables */
unsigned int x, y, i;
/* temporary calculation variables */
int tmp1, tmp2, tmp3;
/* integer [0, 255] version of overall_alpha */
UINT8 overall_alpha_int = 255 * overall_alpha;
/* short-circuit this whole thing if overall_alpha is zero */
if (overall_alpha_int == 0)
return dest;
imDest = imaging_python_to_c(dest);
imSrc = imaging_python_to_c(src);
imMask = imaging_python_to_c(mask);
if (!imDest || !imSrc || !imMask)
return NULL;
/* check the various image modes, make sure they make sense */
if (strcmp(imDest->mode, "RGBA") != 0) {
PyErr_SetString(PyExc_ValueError,
"given destination image does not have mode \"RGBA\"");
return NULL;
}
if (strcmp(imSrc->mode, "RGBA") != 0 && strcmp(imSrc->mode, "RGB") != 0) {
PyErr_SetString(PyExc_ValueError,
"given source image does not have mode \"RGBA\" or \"RGB\"");
return NULL;
}
if (strcmp(imMask->mode, "RGBA") != 0 && strcmp(imMask->mode, "L") != 0) {
PyErr_SetString(PyExc_ValueError,
"given mask image does not have mode \"RGBA\" or \"L\"");
return NULL;
}
/* make sure mask size matches src size */
if (imSrc->xsize != imMask->xsize || imSrc->ysize != imMask->ysize) {
PyErr_SetString(PyExc_ValueError,
"mask and source image sizes do not match");
return NULL;
}
/* set up flags for the src/mask type */
src_has_alpha = (imSrc->pixelsize == 4 ? 1 : 0);
/* how far into image the first alpha byte resides */
mask_offset = (imMask->pixelsize == 4 ? 3 : 0);
/* how many bytes to skip to get to the next alpha byte */
mask_stride = imMask->pixelsize;
/* setup source & destination vars */
setup_source_destination(imSrc, imDest, &sx, &sy, &dx, &dy, &xsize, &ysize);
/* check that there remains any blending to be done */
if (xsize <= 0 || ysize <= 0) {
/* nothing to do, return */
return dest;
}
for (y = 0; y < ysize; y++) {
UINT8 *out = (UINT8 *)imDest->image[dy + y] + dx * 4;
UINT8 *outmask = (UINT8 *)imDest->image[dy + y] + dx * 4 + 3;
UINT8 *in = (UINT8 *)imSrc->image[sy + y] + sx * (imSrc->pixelsize);
UINT8 *inmask = (UINT8 *)imMask->image[sy + y] + sx * mask_stride + mask_offset;
for (x = 0; x < xsize; x++) {
UINT8 in_alpha;
/* apply overall_alpha */
if (overall_alpha_int != 255 && *inmask != 0) {
in_alpha = MULDIV255(*inmask, overall_alpha_int, tmp1);
} else {
in_alpha = *inmask;
}
/* special cases */
if (in_alpha == 255 || *outmask == 0) {
*outmask = in_alpha;
*out = *in;
out++, in++;
*out = *in;
out++, in++;
*out = *in;
out++, in++;
} else if (in_alpha == 0) {
/* do nothing -- source is fully transparent */
out += 3;
in += 3;
} else {
/* general case */
int alpha = in_alpha + MULDIV255(*outmask, 255 - in_alpha, tmp1);
for (i = 0; i < 3; i++) {
/* general case */
*out = MULDIV255(*in, in_alpha, tmp1) +
MULDIV255(MULDIV255(*out, *outmask, tmp2), 255 - in_alpha, tmp3);
*out = (*out * 255) / alpha;
out++, in++;
}
*outmask = alpha;
}
out++;
if (src_has_alpha)
in++;
outmask += 4;
inmask += mask_stride;
}
}
return dest;
}
/* wraps alpha_over so it can be called directly from python */
/* properly refs the return value when needed: you DO need to decref the return */
PyObject *
alpha_over_wrap(PyObject *self, PyObject *args)
{
/* raw input python variables */
PyObject *dest, *src, *pos, *mask;
/* destination position and size */
int dx, dy, xsize, ysize;
/* return value: dest image on success */
PyObject *ret;
if (!PyArg_ParseTuple(args, "OOOO", &dest, &src, &pos, &mask))
return NULL;
/* destination position read */
if (!PyArg_ParseTuple(pos, "iiii", &dx, &dy, &xsize, &ysize)) {
/* try again, but this time try to read a point */
PyErr_Clear();
xsize = 0;
ysize = 0;
if (!PyArg_ParseTuple(pos, "ii", &dx, &dy)) {
PyErr_SetString(PyExc_TypeError,
"given blend destination rect is not valid");
return NULL;
}
}
ret = alpha_over(dest, src, mask, dx, dy, xsize, ysize);
if (ret == dest) {
/* Python needs us to own our return value */
Py_INCREF(dest);
}
return ret;
}
/* like alpha_over, but instead of src image it takes a source color
* also, it multiplies instead of doing an over operation
*/
PyObject *
tint_with_mask(PyObject *dest, unsigned char sr, unsigned char sg,
unsigned char sb, unsigned char sa,
PyObject *mask, int dx, int dy, int xsize, int ysize) {
/* libImaging handles */
Imaging imDest, imMask;
/* cached blend properties */
int mask_offset, mask_stride;
/* source position */
int sx, sy;
/* iteration variables */
unsigned int x, y;
/* temporary calculation variables */
int tmp1, tmp2;
imDest = imaging_python_to_c(dest);
imMask = imaging_python_to_c(mask);
if (!imDest || !imMask)
return NULL;
/* check the various image modes, make sure they make sense */
if (strcmp(imDest->mode, "RGBA") != 0) {
PyErr_SetString(PyExc_ValueError,
"given destination image does not have mode \"RGBA\"");
return NULL;
}
if (strcmp(imMask->mode, "RGBA") != 0 && strcmp(imMask->mode, "L") != 0) {
PyErr_SetString(PyExc_ValueError,
"given mask image does not have mode \"RGBA\" or \"L\"");
return NULL;
}
/* how far into image the first alpha byte resides */
mask_offset = (imMask->pixelsize == 4 ? 3 : 0);
/* how many bytes to skip to get to the next alpha byte */
mask_stride = imMask->pixelsize;
/* setup source & destination vars */
setup_source_destination(imMask, imDest, &sx, &sy, &dx, &dy, &xsize, &ysize);
/* check that there remains any blending to be done */
if (xsize <= 0 || ysize <= 0) {
/* nothing to do, return */
return dest;
}
for (y = 0; y < ysize; y++) {
UINT8 *out = (UINT8 *)imDest->image[dy + y] + dx * 4;
UINT8 *inmask = (UINT8 *)imMask->image[sy + y] + sx * mask_stride + mask_offset;
for (x = 0; x < xsize; x++) {
/* special cases */
if (*inmask == 255) {
*out = MULDIV255(*out, sr, tmp1);
out++;
*out = MULDIV255(*out, sg, tmp1);
out++;
*out = MULDIV255(*out, sb, tmp1);
out++;
*out = MULDIV255(*out, sa, tmp1);
out++;
} else if (*inmask == 0) {
/* do nothing -- source is fully transparent */
out += 4;
} else {
/* general case */
/* TODO work out general case */
*out = MULDIV255(*out, (255 - *inmask) + MULDIV255(sr, *inmask, tmp1), tmp2);
out++;
*out = MULDIV255(*out, (255 - *inmask) + MULDIV255(sg, *inmask, tmp1), tmp2);
out++;
*out = MULDIV255(*out, (255 - *inmask) + MULDIV255(sb, *inmask, tmp1), tmp2);
out++;
*out = MULDIV255(*out, (255 - *inmask) + MULDIV255(sa, *inmask, tmp1), tmp2);
out++;
}
inmask += mask_stride;
}
}
return dest;
}